وبلاگ تخصصی آموزش کامپیوترودانلود نرم افزار (خداجون دوستت دارم)

آموزش و راه کارهای کامپیوتر -مقاله کامپیوتر-قالب -ویندوز XP- ویستا -رمز

وبلاگ تخصصی آموزش کامپیوترودانلود نرم افزار (خداجون دوستت دارم)

آموزش و راه کارهای کامپیوتر -مقاله کامپیوتر-قالب -ویندوز XP- ویستا -رمز

چگونه از شن به سیلیکون و از سیلیکون به پردازنده می‌رسیم‌؟

 

اشاره :

درحالی‌که شرکت‌های پیشگام در صنعت میکروالکترونیک و تولید پردازنده‌ها، به تکنولوژی‌های بسیار پیشرفته‌ای دست یافته‌اند و ما هر روز با دستگاه‌های مجهز به چنین محصولاتی کار می‌کنیم، مناسب است تا یک‌ بار دیگر نگاهی به فرایند تولید پردازنده‌ها بیندازیم، فرایندی که در آن اساساً از ماده اولیه‌ای مانند شن، مدارات مجتمع فوق‌ظریفی مانند پردازنده P4 به‌دست می‌آید.


ماده اولیه
امروزه همه می‌دانند که ماده اولیه پردازنده‌ها همچون دیگر مدارات مجتمع الکترونیکی، سیلیکون است. در واقع سیلیکون همان ماده‌ سازنده شیشه است که از شن استخراج می‌شود. البته عناصر بسیار دیگری هم در این فرایند به‌کار برده می‌شوند و لیکن از نظر درصد وزنی، سهم مجموع این عناصر نسبت به سیلیکون به‌کار رفته در محصول نهایی بسیار جزئی است.

آلومینیوم یکی از مواد دیگری است که در فرایند تولید پردازنده‌ها اهمیت زیادی دارد. هرچند که در پردازنده‌های مدرن، مس به‌تدریج جایگزین آلومینیوم می‌شود.

علاوه بر آنکه فلز مس دارای ضریب هدایت الکتریکی بیشتری نسبت به آلومینیوم است، دلیل مهم‌تری هم برای استفاده از مس در طراحی پردازنده‌های مدرن امروزی وجود دارد. یکی از بزرگ‌ترین مسائلی که در طراحی پردازنده‌های امروزی مطرح است، موضوع نیاز به ساختارهای فیزیکی ظریف‌تر است. به‌یاد دارید که اندازه‌ها در پردازنده‌های امروزی در حد چند ده نانومتر هستند. پس ازآنجایی‌که با استفاده از فلز مس، می‌توان اتصالات ظریف‌تری ایجاد کرد، این فلز جایگزین آلومینیوم شده است.

آماده‌سازی
فرایند‌های تولید قطعات الکترونیکی از یک جهت با بسیاری از فرایند‌های تولید دیگر متفاوت است. در فرایند‌های تولید قطعات الکترونیک، درجه خلوص مواد اولیه مورد نیاز در حد بسیار بالایی اهمیت بسیار زیادی دارند. اهمیت این موضوع در حدی است که از اصطلاح electronic grade برای اشاره به درجه خلوص بسیار بالای مواد استفاده می‌شود.

به همین دلیل مرحله‌ مهمی به‌نام آماده‌سازی در تمامی فرایند‌های تولید قطعات الکترونیک وجود دارد. در این مرحله درجه خلوص موارد اولیه به روش‌های گوناگون و در مراحل متعدد افزایش داده می‌شود تا در نهایت به مقدار خلوص مورد نظر برسد. درجه خلوص مواد اولیه مورد نیاز در این صنعت به اندازه‌ای بالا است که توسط واحد‌هایی مانند ppm به معنی چند اتم ناخالصی در یک میلیون اتم ماده اولیه، بیان می‌شوند.

آخرین مرحله خالص‌سازی ماده سیلیکون، به‌این صورت انجام می‌شود که یک بلورِ خالص سیلیکون درون ظرف سیلیکون مذاب خالص شده قرار داده می‌شود، تا بلور بازهم خالص‌تری در این ظرف رشد کند (همان‌طور که بلورهای نبات در درون محلول اشباع شده به‌دور یک ریسمان نازک رشد می‌کنند). در واقع به این ترتیب، ماده سیلیکون مورد نیاز به‌صورت یک شمش تک کریستالی تهیه می‌شود (یعنی تمام یک شمش بیست سانتی‌متری سیلیکون، یک بلور پیوسته و بدون نقص باید باشد!). 

این روش در صنعت تولید چیپ‌ به روش CZ معروف است. تهیه چنین شمش تک بلوری سیلیکون آن‌قدر اهمیت دارد که یکی از تحقیقات اخیر اینتل و دیگر شرکت‌های تولید‌کننده پردازنده، معطوف تولید شمش‌های سی‌سانتی‌متری سیلیکون تک‌بلوری بوده است. درحالی‌که خط تولید شمش‌های بیست سانتی‌متری سیلیکون هزینه‌ای معادل 5/1 میلیارد دلار در بر دارد، شرکت‌های تولید کننده پردازنده، برای به‌دست آوردن خط تولید شمش‌های تک بلوری سیلیکون سی سانتی‌متری، 5/3 میلیارد دلار هزینه می‌کنند.

موضوع جالب توجه در این مورد آن است که تغییر اندازه شمش‌های سیلیکون تک‌بلوری، تا کنون سریع‌تر از یک‌بار در هر ده‌ سال نبوده است.

پس از آنکه یک بلور سیلیکونی غول‌آسا به شکل یک استوانه تهیه گشت، گام بعدی ورقه ورقه بریدن این بلور است. هر ورقه نازک از این سیلیکون، یک ویفر نامیده می‌شود که اساس ساختار پردازنده‌ها را تشکیل می‌دهد. در واقع تمام مدارات یا ترانزیستورهای لازم، بر روی این ویفر تولید می‌شوند. هر چه این ورقه‌ها نازک‌تر باشند، عمل برش بدون آسیب دیدن ویفر مشکل‌تر خواهد شد.

از طرف دیگر این موضوع به معنی افزایش تعداد چیپ‌هایی است که می‌توان با یک شمش سیلیکونی تهیه کرد. در هر صورت پس از آنکه ویفر‌های سیلیکونی بریده شدند، نوبت به صیقل‌کاری آنها می‌رسد. ویفر‌ها آنقدر صیقل داده می‌شوند که سطوح آنها آیینه‌ای شود. کوچکترین نقصی در این ویفر‌ها موجب عدم کارکرد محصول نهایی خواهد بود. به همین دلیل، یکی دیگر از مراحل بسیار دقیق بازرسی محصول در این مرحله صورت می‌گیرد. در این گام،  علاوه بر نقص‌های بلوری که ممکن است در فرایند تولید شمش سیلیکون ایجاد شده باشند، نقص‌های حاصل از فرایند برش کریستال نیز به‌دقت مورد کنکاش قرار می‌گیرند.

پس از این مرحله، نوبت به ساخت ترانزیستور‌ها بر روی ویفر سیلیکونی می‌رسد. برای این‌کار لازم است که مقدار بسیار دقیق و مشخصی از ماده دیگری به درون بلور سیلیکون تزریق شود. بدین معنی که بین هر مجموعه اتم سیلیکون در ساختار بلوری، دقیقاً یک اتم از ماده دیگر قرار گیرد. در واقع این مرحله نخستین گام فرایند تولید ماده نیمه‌هادی محسوب می‌شود که اساس ساختمان قطعات الکترونیک مانند ترانزیستور را تشکیل می‌دهد. ترانزیستورهایی که در پردازنده‌های امروزی به‌کار گرفته می‌شوند، توسط تکنولوژی CMOS تولید می‌شوند.
CMOS مخفف عبارت Complementary Metal Oxide Semiconductor است. در اینجا منظور از واژه Complementaryآن است که در این تکنولوژی، از تعامل نیمه‌هادی‌های نوع n و p استفاده می‌شود.

بدون آنکه بخواهیم وارد جزئیات فنی چگونگی تولید ترانزیستور بر روی ویفر‌های سیلیکونی بشویم، تنها اشاره می‌کنیم که در این مرحله، بر اثر تزریق مواد گوناگون و همچنین ایجاد پوشش‌های فلزی فوق نازک (در حد ضخامت چند اتم) در مراحل متعدد، یک ساختار چند لایه و ساندویچی بر روی ویفر سیلیکونی اولیه شکل می‌گیرد. در طول این فرایند، ویفر ساندویچی سیلیکونی در کوره‌ای قرار داده می‌شود تا تحت شرایط کنترل‌شده و بسیار دقیق (حتی در اتمسفر مشخص)،  پخته می‌شود و لایه‌ای از SiO2 بر روی ویفر ساندویچی تشکیل شود.

در جدیدترین فناوری اینتل که به تکنولوژی 90 نانومتری معروف است، ضخامت لایه SiO2 فقط 5 اتم است!  این لایه در مراحل بعدی دروازه یا gate هر ترانزیستور واقع در چیپ پردازنده خواهد بود که جریان الکتریکی عبوری را در کنترل خود دارد (ترانزیستورهای تشکیل دهنده تکنولوژی CMOS از نوع ترانزیستورهای اثر میدانی یا Field Effect Transistor :FET  نامیده می‌شوند. در این ترانزیستورها، جریان الکتریکی از اتصالی به‌نام Source به اتصال دیگری به‌نام Drain جریان می‌یابد. وظیفه اتصال سوم به‌نام Gate در این ترانزیستور، کنترل و مدیریت بر مقدار و چگونگی عبور جریان الکتریکی از یک اتصال به اتصال دیگر است).

آخرین مرحله آماده‌سازی ویفر، قرار دادن پوشش ظریف دیگری بر روی ساندویچ سیلیکونی است که photo-resist   نام دارد. ویژگی این لایه آخر، همان‌طور که از نام آن مشخص می شود، مقاومت در برابر نور است. در واقع این لایه از مواد شیمیایی ویژه‌ای ساخته شده است که اگر در معرض تابش نور قرار گرفته شود، می‌توان آن‌را در محلول ویژه‌ای حل کرده و شست و در غیر این صورت (یعنی اگر نور به این پوشش تابانده نشده باشد)، این پوشش در حلال حل نخواهد شد. فلسفه استفاده از چنین ماده‌ای را در بخش بعدی مطالعه خواهید کرد.
 
ماسک کردن
این مرحله از تولید پردازنده‌ها، به‌نوعی از مراحل قبلی کار نیز مهم‌تر است. در این مرحله عمل فتولیتوگرافی
 (Photolithography) بر روی ویفر ساندویچی انجام می‌شود. در واقع آنچه در این مرحله انجام می‌شود آن است که بر روی ویفر سیلیکونی، نقشه و الگوی استنسیل مشخصی با استفاده از فرایند فتولیتوگرافی چاپ می‌شود، تا بتوان در مرحله بعدی با حل‌کردن و شستن ناحیه‌های نور دیده به ساختار مورد نظر رسید (ازآنجایی که قرار است نقشه پیچیده‌ای بر روی مساحت کوچکی چاپ شود، از روش فتولیتوگرافی کمک گرفته می‌شود.
 
در این روش نقشه مورد نظر در مقیاس‌های بزرگتر- یعنی در اندازه‌هایی که بتوان در عمل آنرا تولید کرد، مثلاً در مربعی به مساحت یک متر مربع - تهیه می‌شود. سپس با تاباندن نور به الگو و استفاده از روش‌های اپتیکی، تصویر الگو را بر روی ناحیه بسیار کوچک ویفر می‌تابانند. مثلاً الگویی که در مساحت یک متر مربع تهیه شده بود، به تصویر کوچکی در اندازه‌های چند میلیمتر مربع تبدیل می‌شود!).  در این موارد چند نکته جالب توجه وجود دارد. نخست آنکه الگوها و نقشه‌هایی که باید بر روی ویفر چاپ شوند، آنقدر پیچیده هستند که برای توصیف آنها به 10 گیگابایت داده نیاز است.

در‌واقع می‌توان این موضوع را به حالتی تشبیه کرد که در آن قرار است نقشه‌ای مانند نقشه یک شهر بزرگ با تمام جزئیات شهری و ساختمانی آن بر روی ویفر سیلیکونی به مساحت چند میلی‌متر مربع، چاپ شود. نکته دیگر آنکه در ساختمان چیپ‌های پردازنده، بیش از بیست لایه مختلف وجود دارد که برای هر یک از آنها لازم است چنین نقشه‌هایی لیتوگرافی شود.

موضوع دیگری که بد نیست در اینجا ذکر‌شود، آن است که همانطور که از دروس دبیرستانی ممکن است به‌یاد داشته باشید، نور در لبه‌های اجسام دچار انحراف از مسیر راست می‌شود. پدیده‌ای که به پراش یا Diffraction  معروف است. هرچه لبه‌های اجسامی که در مسیر تابش واقع شده‌اند، کوچک‌تر یا ظریف‌تر باشند، پدیده پراش شدید‌تر خواهد بود.

در واقع یکی از بزرگ‌ترین موانع تولید پردازنده‌هایی که در آنها از ساختار‌های ظریف‌تری استفاده شده باشد، همین موضوع پراکندگی یا تفریق نور است که باعث مات‌شدن تصویری می‌شود که قرار است بر روی ویفر چاپ شود. برای مقابله با این مسئله، یکی از موثرترین روش‌ها، آن است که از نوری در عمل فتولیتوگرافی استفاده کنیم که دارای طول موج کوچک‌تری است (بر اساس اصول اپتیک، هرچه طول موج نور تابانده شده کوچک‌تر باشد، شدت پدیده پراکندگی نور در لبه‌های اجسام کمتر خواهد بود). برای همین منظور در تولید پردازنده‌ها، از نور UV (ماورای بنفش) استفاده می‌شود.

در واقع برای آنکه بتوان تصویر شفاف و ظریفی در اندازه‌ها و مقیاس آنچنانی بر روی ویفر‌ها تولید کرد، تنها طول‌ موج ماورای بنفش جوابگو خواهد بود. اما اگر بخواهیم در نسل بعدی پردازنده‌ها، از الگوهای پیچیده‌تری استفاده کنیم، تکلیف چه خواهد بود؟ در تئوری می‌توان از تابشی با طول موج بازهم کوتاه‌تری استفاده کرد. اما مشکل در اینجا است که تابش با طول موج کوتاه‌تر به معنی استفاده از نوعی اشعه ایکس است. می‌دانید که چنین اشعه‌ای بیشتر از آنکه قادر باشد تصویری از نقشه مورد نظر بر روی ویفر ایجاد کند، به‌علت قابلیت نفوذ زیاد، از تمامی نواحی الگو به‌طور یکسان عبور خواهد کرد!

از موارد فوق که بگذریم، پس از آنکه نقشه مورد‌نظر بر روی ویفر چاپ شد، ویفر درون محلول شیمیایی ویژه‌ای قرار داده می‌شود تا جاهایی که  در معرض تابش واقع شده‌اند، در آن حل شوند. بدین ترتیب شهر مینیاتوری را بر روی ویفر سیلیکونی تجسم کنید که در این شهر خانه‌ها دارای سقفی از جنس SiO2 هستند (مکان‌هایی که نور ندیده‌اند و در‌نتیجه لایه مقاوم در برابر حلال مانع از حل شدن ( SiO2 بوده است). خیابان‌های این شهر فرضی نواحی که مورد تابش نور واقع شده‌اند و لایه مقاوم آن و همچنین لایه SiO2 در حلال حل شده‌اند) از جنس سیلیکون هستند.

تکرار
پس از این مرحله، لایه photo-resist باقی مانده از روی ویفر برداشته می‌شود. در این مرحله ویفری در اختیار خواهیم داشت که در آن دیواره‌ای از جنس SiO2 در زمینی از جنس سیلیکون واقع شده‌اند. پس از این گام، یکبار دیگر یک لایه SiO2 به همراه پلی‌سیلیکون (Polysilicon) بر روی ویفر ایجاد شده و بار دیگر لایه photo-resist جدیدی بر روی ویفر پوشانده می‌شود.
 
همانند مرحله قبلی، چندین بار دیگر مراحل تابش نور و در حلال قرار دادن ویفر انجام می‌شوند. بدین ترتیب پس از دست یافتن به ساختار مناسب، ویفر در معرض بمباران یونی مواد مختلف واقع می‌شود تا نیمه‌هادی نوع n  و p  بر روی نواحی سیلیکونی باقی‌مانده تشکیل شوند. به این وسیله، مواد مشخصی در مقادیر بسیار کم و دقیق به‌درون بلور سیلیکون نفوذ داده می‌شوند تا خواص نیمه‌هادی نوع n و p به‌دست آیند. تا اینجای کار، یک لایه کامل از نقشه الکترونیکی ترانزیستوری دوبعدی بر روی ویفر سیلیکونی تشکیل شده است.

با تکرار مراحل فوق، عملاً ساختار لایه‌ای سه بعدی از مدارات الکترونیکی درون پردازنده تشکیل می‌شود. در بین هر چند لایه، از لایه‌ای فلزی استفاده می‌شود که با حک کردن الگو‌های مشخص بر روی آنها به همان روش‌های قبلی، لایه‌های سیم‌بندی بین المان‌ها ساخته شوند. پردازنده‌های امروزی اینتل، مثلاً پردازنده پنتیوم چهار، از هفت لایه فلزی در ساختار خود بهره می‌گیرد. پردازنده AMD Athlon 64 از 9 لایه فلزی استفاده می‌کند. 

سندرم مرگ ناگهانی پنتیوم 4

می‌دانید که فلزات در حالت جامد ساختار بلوری یا کریستالی دارند و اتم‌های فلزی مانند آلومینیوم یا مس در ساختار‌های کریستالی منظم در جای خود تقریباً ثابت هستند. اما در شرایطی مانند اعمال جریان‌های الکتریکی قوی، در پدیده‌ای موسوم به مهاجرت‌ الکترونی (electromigration)، ممکن است چند اتم فلز از جای خود در ساختار کریستالی کَنده شده و در جهت میدان الکتریکی حرکت کنند.

در چنین حالتی، اصطلاحاً گفته می‌شود که یک یا چند حفره در بلور فلزی برجای می‌ماند. یکی از اثرات چنین پدیده‌ای آن است که ضریب هدایت الکتریکی چنین فلزی در این شرایط کاهش می‌یابد. این موضوع در کارایی پردازنده‌ها اثر نامطلوبی برجای می‌گذارد (مثلاً باعث افزایش دمای تراشه پردازنده می‌شود).  در هر صورت، یکی از دلایل جایگزینی فلز مس به‌جای آلومینیوم همین ماجرای مهاجرت الکترونی است که آلومینیوم در مقایسه با مس، آسیب‌پذیری بیشتری در برابر این پدیده دارد.


نخستین گروه پردازنده‌های پنتیوم چهار اینتل،‌ در مواردی که کاربران این پردازنده‌ها را در شرایط overclock قرار می‌دادند، به‌نوعی از کار می‌افتادند که بعدها به بیماری مرگ ناگهانی مشهور گشت
 (در شرایط overClock پردازنده تحت ولتاژ و درنتیجه جریان الکتریکی بالاتری نسبت به مقدار توصیه شده سازنده قرار داده می‌شود.)

در حقیقت این پردازنده‌ها که به‌نوعی نخستین خروجی خط تولید پردازنده‌های اینتل بود که از فلز مس  در آنها استفاده می‌شد، دچار نقصی بود که پدیده مهاجرت الکترونی در آن نسبتاً به‌راحتی روی می‌داد. نیازی به یادآوری نیست که اینتل این مسئله را به‌سرعت رفع کرد و در پردازنده‌های پنتیوم کنونی به‌هیچ وجه چنین  پدیده‌ای  دیده نمی‌شود.

غربال کردن
تولید ساندویچ‌های پیچیده تشکیل شده از لایه‌های متعدد سیلیکون، فلز و مواد دیگر، فرایندی است که ممکن است روزها و حتی هفته‌ها به‌طول انجامد. در تمامی این مراحل، آزمایش‌های بسیار دقیقی بر روی ویفر سیلیکونی انجام می‌شود تا مشخص شود که آیا در هر مرحله عملیات مربوطه به‌درستی انجام شده‌اند یا خیر. علاوه بر آن در این آزمایش‌ها کیفیت ساختار بلوری و بی‌نقص ماندن ویفر نیز مرتباً آزمایش می‌شود. پس از این مراحل، چیپ‌هایی که نقص نداشته باشند، از ویفر بریده می‌شوند و برای انجام مراحل بسته‌بندی و نصب پایه‌های پردازنده‌ها به بخش‌های ویژه‌ای هدایت می‌شوند.
 
این مراحل واپسین هم دارای پیچیدگی‌های فنی خاصی است. به عنوان مثال، پردازنده‌های امروزی به علت سرعت بسیار بالایی که دارند، در حین کار گرم می‌شود. با توجه با مساحت کوچک ویفر پردازنده‌ها و ساختمان ظریف آنها، درصورتی‌که تدابیر ویژه‌ای برای دفع حرارتی چیپ‌ها اندیشیده نشود، گرمای حاصل به چیپ‌ها آسیب خواهد رساند. بدین معنی که تمرکز حرارتی چیپ به حدی است که قبل از جریان یافتن شار حرارتی به رادیاتور خارجی پردازنده، چیپ دچار آسیب خواهد شد. برای حل این مشکل، پردازنده‌های امروزی در درون خود دارای لایه‌های توزیع دما هستند تا اولاً تمرکز حرارتی در بخش‌های کوچک چیپ ایجاد نشود و ثانیاً سرعت انتقال حرارت به سطح چیپ و سپس خنک کننده  خارجی، افزایش یابد.

اما چیپ‌های آزمایش شده باز هم برای تعیین کیفیت و کارایی چندین‌بار آزمایش می‌شوند. واقعیت آن است که کیفیت پردازنده‌های تولید شده حتی در پایان یک خط تولید و در یک زمان، ثابت نیست و پردازنده‌ها در این مرحله درجه‌بندی می‌شوند! (مثل میوه‌ها که در چند درجه از نظر کیفیت طبقه‌بندی می‌شوند).  برخی از پردازنده‌ها در پایان خط تولید واجد خصوصیاتی می‌شوند که می‌توانند مثلاً تحت ولتاژ‌ یا فرکانس بالاتری کار کنند. این موضوع یکی از دلایل اصلی تفاوت قیمت پردازنده‌ها است.

گروه دیگری از پردازنده‌ها، دچار نقص در بخش‌هایی می‌شوند که همچنان آنها را قابل استفاده نگاه می‌دارد. به عنوان مثال، ممکن است برخی از پردازنده‌ها در ناحیه حافظه نهان (Cache) دچار نقص باشند. در این موارد، می‌توان به‌روش‌هایی بخش‌های آسیب دیده را از مدار داخلی پردازنده خارج ساخت. بدین‌ترتیب پردازنده‌هایی به‌دست می‌آیند که مقدار حافظه نهان کمتری دارند.

بدین ترتیب پردازنده‌هایی مانند Celeron در اینتل و Sempron در شرکت AMD، در خط تولید پردازنده‌های Full cache این شرکت‌ها نیز تولید می‌شوند!

     
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد